OpenAI 构建智能体指南
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf 目录 什么是智能体? 4 何时应该构建智能体? 5 智能体设计基础 7 防护机制 24 结论 32 引言 大语言模型(Large Language Models)正变得越来越有能力处理复杂的多步骤任务。在推理、多模态(multi-modality)和工具使用方面的进步,催生了一类新的由大语言模型驱动的系统,称为 AI 智能体(AI Agent)。 本指南专为探索如何构建其首个 AI 智能体的产品和工程团队设计,将来自众多客户部署的见解提炼为实用且可操作的最佳实践。它包括用于识别有前景用例的框架、设计 AI 智能体逻辑和编排的清晰模式,以及确保您的 AI 智能体安全、可预测且有效运行的最佳实践。 阅读本指南后,您将拥有自信地开始构建您的第一个 AI 智能体所需的基础知识。 什么是 AI 智能体? 虽然传统软件能让用户简化和自动化workflows,但 AI 智能体能够代表用户以高度的独立性执行相同的workflows。 AI 智能体是能够代表你独立完成任务的系统。 workflows是为了实现用户目标而必须执行的一系列步骤,无论是解决客户服务问题、预订餐厅、提交代码更改,还是生成报告。 那些集成了大语言模型(LLM)但不使用它们来控制workflows执行的应用程序——例如简单的聊天机器人、单轮大语言模型或情感分类器——不是 AI 智能体。 更具体地说,一个 AI 智能体拥有核心特征,使其能够代表用户可靠且一致地行动: 它利用大语言模型(LLM)来管理workflows执行和做出决策。它能识别workflows何时完成,并能在需要时主动纠正其行为。在失败的情况下,它可以停止执行并将控制权交还给用户。 它能访问各种工具以与外部系统交互——既为了收集上下文信息,也为了采取行动——并根据workflows的当前状态动态选择合适的工具,始终在明确定义的防护措施内操作。 何时应该构建 AI 智能体? 构建 AI 智能体需要重新思考您的系统如何制定决策和处理复杂性。与传统自动化不同,AI 智能体特别适用于传统确定性和基于规则的方法力不从心的workflows。 以支付欺诈分析为例。传统的规则引擎像核对清单一样工作,根据预设标准标记交易。相比之下,大语言模型 AI 智能体更像一位资深调查员,评估上下文,考虑细微模式,并在没有明确违反规则的情况下识别可疑活动。这种细致入微的推理能力正是使 AI 智能体能够有效管理复杂、模糊情况的关键所在。 在评估 AI 智能体可以在哪些方面增加价值时,应优先考虑那些以前难以自动化、特别是传统方法遭遇瓶颈的workflows: 01 复杂的决策制定: 涉及细致判断、例外情况或需结合上下文决策的workflows,例如客户服务workflows中的退款审批。 02 难以维护的规则: 因规则集过于庞大和复杂而变得难以管理,导致更新成本高昂或容易出错的系统,例如执行供应商安全审查。 03 严重依赖非结构化数据: 涉及解释自然语言、从文档中提取含义或与用户进行对话式交互的场景,例如处理房屋保险索赔。 ...